Source code for matrixprofile.algorithms.statistics

# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

range = getattr(__builtins__, 'xrange', range)
# end of py2 compatability boilerplate

import numpy as np

from matrixprofile import core


[docs]def statistics(ts, window_size): """ Compute global and moving statistics for the provided 1D time series. The statistics computed include the min, max, mean, std. and median over the window specified and globally. Parameters ---------- ts : array_like The time series. window_size: int The size of the window to compute moving statistics over. Returns ------- dict : statistics The global and rolling window statistics. >>> { >>> ts: the original time series, >>> min: the global minimum, >>> max: the global maximum, >>> mean: the global mean, >>> std: the global standard deviation, >>> median: the global median, >>> moving_min: the moving minimum, >>> moving_max: the moving maximum, >>> moving_mean: the moving mean, >>> moving_std: the moving standard deviation, >>> moving_median: the moving median, >>> window_size: the window size provided, >>> class: Statistics >>> } Raises ------ ValueError If window_size is not an int. If window_size > len(ts) If ts is not a list or np.array. If ts is not 1D. """ if not core.is_array_like(ts): raise ValueError('ts must be array like') if not core.is_one_dimensional(ts): raise ValueError('The time series must be 1D') if not isinstance(window_size, int): raise ValueError('Expecting int for window_size') if window_size > len(ts): raise ValueError('Window size cannot be greater than len(ts)') if window_size < 3: raise ValueError('Window size cannot be less than 3') moving_mu, moving_sigma = core.moving_avg_std(ts, window_size) rolling_ts = core.rolling_window(ts, window_size) return { 'ts': ts, 'min': np.min(ts), 'max': np.max(ts), 'mean': np.mean(ts), 'std': np.std(ts), 'median': np.median(ts), 'moving_min': np.min(rolling_ts, axis=1), 'moving_max': np.max(rolling_ts, axis=1), 'moving_mean': moving_mu, 'moving_std': moving_sigma, 'moving_median': np.median(rolling_ts, axis=1), 'window_size': window_size, 'class': 'Statistics' }